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In this paper, some exact solutions for 2-D convective heat transfer between two parallel penetrable walls
were derived and analyzed based on field synergy theory. They are valuable to further develop the field
synergy principle and understand how to improve or to weaken field synergy in practice. In addition,
these solutions can be used as benchmarks to verify numerical solutions and to develop numerical
schemes, grid generation methods and so forth. All solutions given in this paper can be proven easily
by substituting them into the governing equations.
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1. Introduction

Analytical analysis, numerical computation and experiment
are the three basic ways to research the order of nature. They
can work synergically to deepen the understanding of various
complex phenomena. The development of field synergy principle
for convective heat transfer enhancement is a typical example on
hand. In 1998 Guo and his co-workers found out the convection
term can be expressed as the dot product of velocity and temper-
ature gradient. And the integral of the dot product over the ther-
mal boundary layer is proportional to the heat transferred by
convection for the parabolic fluid flow case [1–3]. Therefore
reducing the intersection angle between velocity and temperature
gradient can enhance the convective heat transfer effectively. This
concept was extended to elliptic flow by both analytical analyses
and numerical computations in 2002 [4]. After that, this principle
was further confirmed by many numerical and experimental
studies [5–14]. All the results led to the establishment of the
principle as the unified theory of single phrase convective heat
transfer enhancement.

Another example of the ‘‘synergy” between different methods is
to verify numerical computation methods utilizing exact solutions.
It is well known that the exact solutions have their own theoretical
meaning. Many exact solutions played key roles in the early devel-
opment of fluid mechanics and heat conduction [15,16]. Besides
their theoretical meaning, exact solutions can also be applied to
check the accuracy, convergence and effectiveness of various
numerical computation methods and to improve their differencing
ll rights reserved.
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schemes, grid generation ways and so on. The exact solutions are
therefore very useful even for the newly rapidly developing com-
putational fluid dynamics and heat transfer. For instance, several
exact solutions which can simulate the 3-D potential flow in turbo-
machine cascades were obtained by Cai et al. [17], and were
successfully used by some investigators in their numerical calcula-
tion to check their computational techniques and computer codes
[18–21]. In addition, the method of separating variables with addi-
tion, which was proposed by the second author, and other special
methods were widely applied to different types of equations to de-
rive analytical solutions [22–40].

In this paper, some exact solutions for 2-D convective heat
transfer between two parallel penetrable walls were derived and
analyzed based on field synergy theory. They are valuable to fur-
ther develop the field synergy principle and understand how to
improve or weaken field synergy in practice.

The derivation of field synergy principle in Ref. [1] was based on
the boundary layer energy equation and the integration domain
was the thermal boundary layer. The extension of this theory in
Ref. [4] was based on the energy equation and the integration
domain was the region bounded with solid walls, according to
Eq. (6) in [4]. These derivation procedures are independent with
any special boundary conditions or special heat transfer mediums.
Therefore, we tried to analyze these solutions with the same man-
ner, which makes the results more general. And it’s also an advan-
tage of exact solutions over numerical solutions in verifying
theories. On the other hand, one of the objects of this paper was
to present some physically meaningful benchmark solutions for
the computational fluid dynamics and heat transfer. The solutions
with better boundary conditions would be more preferable. There-
fore, the boundary conditions were also primarily discussed.

mailto:gch6969@yahoo.com.cn
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Nomenclature

a thermal diffusivity, m2/s
cp specific heat, J/(kg � K)
Ci arbitrary constant, especially, C12 is an arbitrary non-

zero integer
f ðyÞ arbitrary function of y
Fc field synergy number
gðxÞ arbitrary function of x
h heat transfer coefficient, W/(m2 � K)
H transverse distance between walls, m
Int The integral defined by Eq. (33)
kðx; yÞ arbitrary function of x, y
n arbitrary nonzero integer
Nu Nusselt number
Nu0; Nu1 Nusselt number at y ¼ 0 and y ¼ 1
p pressure, Pa
q0; q1 heat flux at y ¼ 0 and y ¼ 1, W/m2

rðxÞ arbitrary function of x
T excess temperature, K
u velocity component in x direction, m/s
um average velocity in x direction, m/s

Um average velocity, m/s
U
!

velocity vector, m/s
U
!

dimensionless velocity vector
v velocity component in y direction, m/s
x; y x ordinate and y ordinate
y dimensionless y ordinate

Greek symbols
g dynamic viscosity, kg/(m � s)
q density, kg/m3

uðyÞ arbitrary function of y
wðx; yÞ arbitrary function of x, y
DT temperature difference between walls, K
DNu total Nusselt number defined by Eq. (32)
rT
�!

temperature gradient, K/m
rT
�!

dimensionless temperature gradient
k thermal conductivity, W/(m � K)
h field synergy angle between U

!
and rT

�!
, deg
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2. The first solution with uniform y direction velocity

The governing equation set of the 2-D steady laminar forced
convective heat transfer can be expressed as follows (neglecting
gravity and dissipation heat)

ou
ox
þ ov

oy
¼ 0 ð1Þ

q u
ou
ox
þ v

ou
oy

� �
¼ � op

ox
þ g

o2u
ox2 þ

o2u
oy2

 !
ð2Þ

q u
ov
ox
þ v

ov
oy

� �
¼ � op

oy
þ g

o2v
ox2 þ

o2v
oy2

 !
ð3Þ

u
oT
ox
þ v

oT
oy
¼ a

o2T
ox2 þ

o2T
oy2

 !
ð4Þ

where T is excess temperature; x and y are geometric coordinates; u
and v are corresponding velocity components; p is pressure; q is
density; a is thermal diffusivity; g is dynamic viscosity. To simplify
the analysis, q, a, g are assumed to be constant.

Governing equation set (1)–(4) are nonlinear simultaneous par-
tial differential equations. It’s not easy to be solved. In order to
obtain algebraically explicit analytical solutions for evidently
understanding the results and to obtain better benchmark solu-
tions, simple y direction velocity distribution is firstly assumed.
The simplest function form of y direction velocity is

v ¼ C1 ð5Þ

Substituting Eq. (5) into Eqs. (1) and (3), following results can be
deduced

ou
ox
¼ 0; u ¼ f ðyÞ ð6Þ

op
oy
¼ 0; p ¼ gðxÞ ð7Þ

Substituting Eqs. (5)–(7) into Eq. (2), it is derived

qC1f 0ðyÞ ¼ �g0ðxÞ þ gf 00ðyÞ ð8Þ

The variables can be separated easily

gf 00ðyÞ � qC1f 0ðyÞ ¼ C2 ¼ g0ðxÞ ð9Þ
Then it is deduced

f ðyÞ ¼ �C3 exp
qC1y

g

� �
� C2y

qC1
þ C4 ð10Þ

gðxÞ ¼ C2xþ C5 ð11Þ

Assuming the no slip condition are satisfied at y ¼ 0 and y ¼ 1

uy¼0 ¼ f ð0Þ ¼ �C3 þ C4 ¼ 0 ð12Þ

uy¼1 ¼ f ð1Þ ¼ �C3 exp
qC1

g

� �
� C2

qC1
þ C4 ¼ 0 ð13Þ

then following results are derived

C4 ¼ C3 ð14Þ

C2 ¼ �qC1C3 exp
qC1

g

� �
� 1

� �
ð15Þ

Therefore, the final solution for the fluid flow Eqs. (1)–(3) is

u ¼ �C3 exp
qC1y

g

� �
þ C3 exp

qC1

g

� �
� 1

� �
yþ C3 ð16Þ

v ¼ C1 ð17Þ

p ¼ �qC1C3 exp
qC1

g

� �
� 1

� �
xþ C5 ð18Þ

Substituting Eqs. (16) and (17) into the energy equation (4) leads to

�C3 exp
qC1y

g

� �
þ C3 exp
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g

� �
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� �
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� �
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ox
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ð19Þ

Or Eq. (19) can be expressed as

�C3 exp
qvy
g

� �
� op

ox
1
qv

yþ C3

� �
oT
ox
þ v

oT
oy

¼ a
o2T
ox2 þ

o2T
oy2

 !
ð19aÞ

If first assuming

T ¼ uðyÞ ð20Þ

Eq. (19) can be simplified as



Fig. 2. The variation of u in Eq. (16) with C1 > 0 and C3 > 0.
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C1
du
dy
¼ a

d2u
dy2 ð21Þ

Then it is derived

T ¼ C6 þ C7 exp
C1y

a

� �
ð22Þ

Eqs. (16)–(18) and (22) is a solution of the governing equation set
(1)–(4) with isothermal boundaries. The wall temperature T1 (the
temperature at y ¼ 1Þ and T0 (the temperature at y ¼ 0) are differ-
ent. Some constants in this solution are actually physically mean-
ingful. For example, C1 is the penetration velocity, namely y
direction velocity; C3 reflects the pressure gradient in x direction;
and C7 influences the wall temperature difference proportionally.
The boundary conditions could be

y ¼ 0 u ¼ 0
v ¼ C1

p ¼ �qC1C3 exp qC1
g

	 

� 1

h i
xþ C5

T ¼ C6 þ C7

y ¼ 1 u ¼ 0
v ¼ C1

p ¼ �qC1C3 exp qC1
g

	 

� 1

h i
xþ C5

T ¼ C6 þ C7 exp C1
a

� �
x ¼ 0 u ¼ �C3 exp qC1y

g

	 

þ C3 exp qC1

g

	 

� 1

h i
yþ C3

v ¼ C1

p ¼ C5

T ¼ C6 þ C7 exp C1y
a

� �
x ¼ 1 u ¼ �C3 exp qC1y

g

	 

þ C3 exp qC1

g

	 

� 1

h i
yþ C3

v ¼ C1

p ¼ �qC1C3 exp qC1
g

	 

� 1

h i
þ C5

T ¼ C6 þ C7 exp C1y
a

� �
The boundary conditions of other solutions given in the following
paragraphs can be determined similarly.

The isothermal lines are parallel to x axis. The streamline equa-
tion can be derived by dy=dx ¼ v=u and the result is
Fig. 1. The stream lines and isothermal lines of the solution Eqs. (16)–(18) and (22)
with C1 > 0, C3 > 0 and C7 > 0.
C1x ¼ � gC3

qC1
exp

qC1y
g

� �
þ C3

2
exp

qC1

g

� �
� 1

� �
y2 þ C3yþ C8

ð23Þ

When C1 > 0, C3 > 0 and C7 > 0, the stream lines and isothermal
lines are illustrated in Fig. 1. The variation of u with C1 and C3 is
shown in Fig. 2.

The temperature difference between the two walls is

DT ¼ T1 � T0 ¼ C6 þ C7 exp
C1

a

� �� �
� ðC6 þ C7Þ

¼ C7 exp
C1

a

� �
� 1

� �
ð24Þ

If assuming

C7 ¼ exp
C1

a

� �
� 1

� ��1

ð25Þ

it is deduced DT ¼ 1, which means the temperature difference
between the walls is independent of C1. If further assuming

C6 ¼ � exp
C1

a

� �
� 1

� ��1

ð26Þ

Eq. (22) becomes

T ¼ � exp
C1

a

� �
� 1

� ��1

þ exp
C1

a

� �
� 1

� ��1

exp
C1y

a

� �
ð27Þ

Then we can get the solution Eqs. (16)–(18) and (27) with T1 ¼ 1
and T0 ¼ 0, which means the wall temperatures are not influenced
by the value of Ci. The arbitrary constants C1 and C3 can only influ-
ence the flow field, but not the thermal boundaries on walls. It is
convenient for us to analyze the variation trend of Nu with C1 and
C3.

The field synergy principle is obviously suitable in this case,
since oT

ox ¼ 0,
R 1

0 U
!� rT

�!
dy ¼ a

R 1
0

o2T
oy2 dy. There is no x direction heat

transfer needs to be considered. From Eq. (27) it is deduced

h ¼ k
ðT1 � T0Þ

oT
oy
¼ C1k

a exp C1
a

� �
� a

exp
C1y

a

� �
ð28Þ

The characteristic length for Nusselt numbers is chosen as 2H,
where H is the transverse distance between walls, which equals 1
in this paper. k is thermal conductivity. Then the expressions of
Nusselt numbers are
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Nu ¼ 2h
k
¼ 2C1

a exp
C1

a

� �
� a

exp
C1y

a

� �
ð29Þ

Nu0 ¼
2C1

a exp
C1

a

� �
� a

ð30Þ

Nu1 ¼
2C1

a exp
C1

a

� �
� a

exp
C1

a

� �
ð31Þ

Since the Nusselt numbers on the walls are different, another
parameter is defined to facility the analysis

DNu ¼ Nu1 � Nu0 ¼
2

T1 � T0ð Þ
oT
oy

1
0
¼ 2
ðT1 � T0Þ

Z 1

0

o2T
oy2 dy ¼ 2C1

a

ð32Þ

According to the definition of DNu, it can be regarded as the total

wall Nusselt number. If q1 ¼ �k oT
oy


1

and q0 ¼ �k oT
oy


0

have different

signs, DNu is the dimensionless total wall heat exchange strength.

If q1 ¼ �k oT
oy


1

and q0 ¼ �k oT
oy


0

are with the same signs, DNu is the

dimensionless difference value of wall heat exchange strengths.
The integral of the dot product of velocity and temperature gradi-
ent, which can be regarded as the convective source term, can be
expressed as

Int ¼
Z 1

0

~U � ~rTdy ¼
Z 1

0
v

oT
oy

dy ¼ C1ðT1 � T0Þ ¼ C1 ð33Þ

It’s clear that Int and Nu have nothing to do with C3 if C1 is not a
function of C3. The variation of Int, Nu1, Nu0 and DNu with C1 is
shown in Fig. 3. It is noticeable that the variation of convective
source term has quite different influence on the heat transfer con-
dition of different walls. But the variation trends of Int and DNu are
the same.

The formula of field synergy angle can be deduced as follows

~rT � ~U ¼ ~rT
  ~U  cos h ¼ u

oT
ox
þ v

oT
oy
¼ v

oT
oy
¼ C2

1C7

a
exp

C1y
a

� �
ð34Þ

~rT
  ¼ oT

oy


 ¼ C1C7

a
exp

C1y
a

� �
ð35Þ
Fig. 3. The variation of Int, Nu1, Nu0 and DNu with C1 in the solution Eqs. (16)–(18)
and (22).
~U
  ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�C3 exp

qC1y
g

� �
þ C3 exp

qC1

g

� �
� 1

� �
yþ C3

� �2

þ C2
1

s

ð36Þ

cos h ¼ C1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�C3 exp qC1y

g

	 

þ C3 exp qC1

g

	 

� 1

h i
yþ C3

n o2
þ C2

1

r ð37Þ

h ¼ arccos
C1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�C3 exp qC1y
g

	 

þ C3 exp qC1

g

	 

� 1

h i
yþ C3

n o2
þ C2

1

r
ð38Þ

The variation of h with C3 is shown in Fig. 4. It shows h increases
with C3 which means the degree of field synergy is worse with
larger x direction velocity.

The expression of field synergy number can be derived as

Fc ¼
Z 1

0

~U � ~rTd�y ð39Þ

~U ¼
~U

Um
; ~rT ¼

~rT
ðT1 � T0Þ=1

; �y ¼ y=1 ð40Þ

Um ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

m þ v2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

m þ C2
1

q
ð41Þ

um ¼
Z 1

0
�C3 exp

qC1y
g

� �
þ C3 exp

qC1

g

� �
� 1

� �
yþ C3

� �
dy

¼ � C3g
qC1

exp
qC1y

g

� �
þ C3

2
exp

qC1

g

� �
� 1

� �
y2 þ C3y

� �1
0

¼ � C3g
qC1

exp
qC1

g

� �
þ C3

2
exp

qC1

g

� �
� 1

� �
þ C3g

qC1
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ð42Þ

Fc ¼
Z 1

0

~U � ~rTd�y ¼ 1
UmðT1 � T0Þ

Z 1

0
v

oT
oy

dy ¼ C1

Um
ð43Þ

The variation of Fc with C3 is shown in Fig. 5. Figs. 4 and 5 demon-
strate that the field synergy number is a decreasing function, while
h is an increasing function of x direction velocity, when y direction
velocity is kept constant. At the same time Int, Nu1, Nu0 and DNu are
Fig. 4. The variation of h with C3 in the solution Eqs. (16)–(18) and (22).



Fig. 6. The stream lines and isothermal lines of the solution Eqs. (16)–(18) and (46)
with C1 > 0, C3 > 0, C9 > 0, aq > g and C6 ¼ C7 ¼ 0.

Fig. 5. The variation of Fc with C3 in the solution Eqs. (16)–(18) and (22).
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not influenced by x direction velocity. Generally, for the convective
heat transfer process which satisfies oT

ox ¼ 0 in the whole computa-
tion domain, the x direction velocity u ¼ wðx; yÞ might influence Fc
and h but not Nu or Int, which makes the variation trend between
them are different.

3. The second solution with uniform y direction velocity

If it is assumed

T ¼ uðyÞ � C9x ð44Þ

Eq. (19) can be simplified as

C1
du
dy
� �C3 exp

qC1y
g

� �
þC3 exp

qC1

g

� �
�1

� �
yþC3

� �
C9¼a

d2u
dy2

ð45Þ

C9 actually could reflect the temperature gradient along the walls.
The result is

T ¼ C6 þ C7 exp
C1y

a

� �
þ C3C9g2

aq2C2
1 � gqC2

1

exp
qC1y

g

� �

þ C3C9

2C1
exp

qC1

g

� �
� 1

� �
y2

þ
aC3C9 exp qC1

g

	 

� 1

h i
þ C1C3C9

C2
1

y� C9x ð46Þ

Eqs. (16)–(18) and (46) is a solution of the governing equation set
(1)–(4). The temperatures on the walls are linear functions of x.
The temperature difference between walls is constant.

DT ¼ C7 exp
C1

a

� �
þ C3C9g2

aq2C2
1 � gqC2

1

exp
qC1

g

� �

þ C3C9

2C1
exp

qC1

g

� �
� 1

� �
þ

aC3C9 exp qC1
g

	 

� 1

h i
þ C1C3C9

C2
1

� C3C9g2

aq2C2
1 � gqC2

1

� C7 ð47Þ

When C1 > 0, C3 > 0, C9 > 0, aq > g and C6 ¼ C7 ¼ 0, the stream
lines and isothermal lines are illustrated in Fig. 6.

From Eq. (46) the expression of temperature gradient is
oT
oy
¼ C1C7

a
exp

C1y
a

� �
þ C3C9g

aqC1 � gC1
exp

qC1y
g

� �

þ C3C9

C1
exp

qC1

g

� �
� 1

� �
yþ

aC3C9 exp qC1
g

	 

� 1

h i
þ C1C3C9

C2
1

ð48Þ

If assuming

oT
oy


y¼y1

¼ 0 ð49Þ

where y1 is a constant between 0 and 1, it is deduced

C1C7

a
exp

C1y1

a

� �
þ C3C9g

aqC1�gC1
exp

qC1y1

g

� �

þC3C9

C1
exp

qC1

g

� �
�1

� �
y1þ

aC3C9 exp qC1
g

	 

�1

h i
þC1C3C9

C2
1

¼ 0 ð50Þ

Further assuming

C7 ¼
C10C3C9a

C2
1

ð51Þ

Eq. (50) can be simplified as

C10 exp
C1y1

a

� �
þ g

aq� g
exp

qC1y1

g

� �
þ exp

qC1

g

� �
� 1

� �
y1

þ
a exp qC1

g

	 

� 1

h i
þ C1

C1
¼ 0 ð52Þ

The expression of C10 is

C10 ¼
g

aq�g exp qC1y1
g

	 

þ exp qC1

g

	 

� 1

h i
y1 þ

a exp
qC1
g

� �
�1

� �
þC1

C1

� exp C1y1
a

	 
 ð53Þ

Then Eq. (46) becomes

T¼C6þ
C10C3C9a

C2
1

exp
C1y

a

� �
þ C3C9g2

aq2C2
1�gqC2

1

exp
qC1y

g

� �

þC3C9

2C1
exp

qC1

g

� �
�1

� �
y2þ

aC3C9 exp qC1
g

	 

�1

h i
þC1C3C9

C2
1

y�C9x

ð54Þ

In the solution Eqs. (16)–(18), (53) and (54) there is
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o2T
ox2 ¼ 0 ð55Þ

which means the field synergy principle is obviously suitable in this
case. No x direction heat transfer needs to be considered. Eq. (4) can
be simplified as

u
oT
ox
þ v

oT
oy
¼ a

o2T
oy2 : ð56Þ

If integrating Eq. (56) over ½0; y1� and ½y1;1�, it is derivedZ y1

0
u

oT
ox
þ v

oT
oy

� �
dy ¼ a

oT
oy

y1

0
¼ 1

qcp
�k

oT
oyy¼0

 !
ð57Þ

Z 1

y1

u
oT
ox
þ v

oT
oy

� �
dy ¼ a

oT
oy

1
y1

¼ � 1
qcp

�k
oT
oyy¼1

 !
ð58Þ

These equations demonstrate that if there is 1 > y1 > 0 at which
oT
oy


y¼y1

¼ 0, the heat transferred between the fluid flow and the wall

y ¼ 0 are decided by the convective source term in the domain
½0; y1�. And the heat transferred between the fluid flow and the wall
y ¼ 1 is decided by the convective source term in the domain ½y1;1�.
They are not related directly with the field synergy degree in the
whole computation domain between the walls, if axial heat transfer
can be neglected or there is no axial heat transfer, as in this exam-
ple. Furthermore, if there are 1 > y2 > y1 > 0 at which
oT
oy


y¼y2

¼ oT
oy


y¼y1

¼ 0, then the heat transferred at the walls y ¼ 0

and y ¼ 1 are decided by the field synergy degree in the domain
½0; y1� and ½y2;1�, respectively. The field synergy condition in the do-
main ðy1; y2Þ is not directly related with heat transferred at the
walls. This gives the way to find out the heat transfer situation on
a specific wall though field analysis. This also points out the rela-
tionship between the local field synergy condition and the specific
wall heat transfer.

More generally, for a given temperature field Tðx; yÞ, if there is a
curve y ¼ yðxÞ on which oT

oy ¼ 0 are always satisfied in the domain
x 2 ½x1; x2�, as instantiated in Fig. 7, it actually divide the velocity
field and the temperature field between ½x1; x2� into several parts.
The energy transferred between fluid flow and the upper wall or
the bottom wall can be calculated according to the upper or the
bottom convective source terms, respectively. It is interesting to
find that in the first example of Ref. [1] (see Fig. 1 and Eq. (2) in
[1]), the fields are in fact divided by the imaginary boundary of
thermal boundary layer. That is why the integral of the dot product
Fig. 7. The example of a curve y ¼ y xð Þ on which oT
oy ¼ 0 are always satisfied in the

domain x 2 ½x1; x2�.
over the thermal boundary layer is proportional to the wall heat
flux. And the fluid domain beyond the thermal boundary layer con-
tributes nothing to the heat transfer on the wall.

The authors notice that in Section 2.2 of Ref. [5], a parallel
plate duct with two square insertions was chosen as the compu-
tational domain (see Fig. 5 in [5]). The two inserted blocks were
assumed to be thermally isolated from the fluid. This example
actually can be regarded as a case in which velocity field and
temperature field are divided by inserted adiabatic objects. In
other words, inserted adiabatic objects can divide fields. There-
fore, when considering the duct with inserted objects, some ef-
fects need to be taken into account. First, they can introduce
interruption within the fluid. Second, they will occupy some
space, which decreases the integral domain of convective source
term. In addition, if they are adiabatic or can be regarded adia-
batic, they can divide the fields.

The variation trend of Int; Nu, h and Fc with Ci can be analyzed
with the same method of the last section.
4. Other possible solutions with uniform y direction velocity

Based on the solution Eqs. (16)–(18) and (46), if assuming

Ty¼0 ¼ Ty¼1 ð59Þ

it is deduced

C7 þ
C3C9g2

aq2C2
1 � gqC2

1

¼ C7 exp
C1

a

� �
þ C3C9g2

aq2C2
1 � gqC2

1

exp
qC1

g

� �

þ C3C9

2C1
exp

qC1

g

� �
� 1

� �
þ

aC3C9 exp qC1
g

	 

� 1

h i
þ C1C3C9

C2
1

ð60Þ

C7 ¼

C3C9g2

aq2C2
1�gqC2

1
exp qC1

g

	 

þ C3C9

2C1
exp qC1

g

	 

� 1

h i
þ

aC3C9 exp
qC1
g

� �
�1

� �
þC1C3C9

C2
1

� C3C9g2

aq2C2
1�gqC2

1

8><
>:

9>=
>;

1� exp C1
a

� �� � ð61Þ

Eqs. (16)–(18), (46) and (61) is a solution of the governing equation
set (1)–(4). The temperatures on the walls are linear functions of x.
But the wall temperature T1 and T0 are equal at the same x.

If assuming

oT
oyy¼0

¼ oT
oyy¼1

ð62Þ

instead Eqs. (60) and (61), we can get

C7C1

a
þ C3C9g

aqC1 � gC1
¼ C7C1

a
exp

C1

a

� �
þ C3C9g

aqC1 � gC1
exp

qC1

g

� �

þ C3C9

C1
exp

qC1

g

� �
� 1

� �
ð63Þ

C7 ¼
aC3C9g

aqC2
1�gC2

1
exp qC1

g

	 

þ aC3C9

C2
1

exp qC1
g

	 

� 1

h i
� aC3C9g

aqC2
1�gC2

1

1� exp C1
a

� � ð64Þ

Eqs. (16)–(18), (46) and (64) is also a solution of the governing
equation set (1)–(4). The temperatures on the walls are linear func-
tions of x as well. But the wall heat fluxes are equal at the same x.
5. The solution with variable y direction velocity

If the y direction velocity is not uniform in the computation do-
main, the temperature field and the velocity field would be more
complex. It is assumed
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u ¼ C11 sinnðC12pyÞkðx; yÞ ð65Þ

where kðx; yÞ–�1 in the domain y 2 ½0;1�, x 2 ½0;1�; C12 and n are
arbitrary nonzero integers.

ou
ox
¼ C11 sinnðC12pyÞ okðx; yÞ

ox
ð66Þ

According to Eq. (1), it is deduced

v ¼ �
Z

C11 sinn C12pyð Þ okðx; yÞ
ox

dy ð67Þ

For example, assuming kðx; yÞ ¼ expðC13xÞ and n ¼ 1, then we can
get

u ¼ C11 sinðC12pyÞ expðC13xÞ ð68Þ

v ¼ C11C13

C12p
cosðC12pyÞ expðC13xÞ þ rðxÞ ð69Þ

To simplify the derivation, assuming rðxÞ ¼ 0, Eq. (69) becomes

v ¼ C11C13

C12p
cosðC12pyÞ expðC13xÞ ð70Þ

Substituting Eqs. (68) and (70) into Eq. (4) leads to

C11 sinðC12pyÞ expðC13xÞ oT
ox
þ C11C13

C12p
cosðC12pyÞ expðC13xÞ oT

oy

¼ a
o2T
ox2 þ

o2T
oy2

 !
ð71Þ

According to the field synergy principle, reducing the intersection
angle between velocity and temperature gradient can enhance the
convective heat transfer. On the contrary, increasing the intersec-
tion angle between them can weaken the convective heat transfer.
Both of these conclusions are useful in practice. Most papers pub-
lished about field synergy principle are concerning heat transfer
enhancement. But here we derive a typical non-synergy explicit
solution, which means the intersection angle between velocity
and temperature gradient equals p=2. Hence the heat transfer con-
dition is the worst. It is assumed

C11 sinðC12pyÞ expðC13xÞ oT
ox
þ C11C13

C12p
cosðC12pyÞ expðC13xÞ oT

oy

¼ 0 ¼ a
o2T
ox2 þ

o2T
oy2

 !
ð72Þ

A special solution of T in the left side of Eq. (72) can be expressed as

T ¼ C14 cosðC12pyÞ expðC13xÞ þ C15 ð73Þ

Substituting Eq. (73) into the right side of Eq. (72), it is obtained

C13 ¼ �C12p ð74Þ

Therefore, Eqs. (68), (70) and (73) can be rewritten as

u ¼ C11 sinðC12pyÞ expð�C12pxÞ ð75Þ
v ¼ �C11 cosðC12pyÞ expð�C12pxÞ ð76Þ
T ¼ C14 cosðC12pyÞ expð�C12pxÞ þ C15 ð77Þ

Substituting Eqs. (75) and (76) into Eqs. (2) and (3), it is deduced

p ¼ �C2
11q
2

expð�2C12pxÞ þ C16 ð78Þ

Eqs. (75)–(78) is a non-synergy solution. The y direction velocity
boundary conditions are as follows

y ¼ 0; u ¼ 0 ð79Þ
y ¼ 1; u ¼ 0 ð80Þ

in addition
y¼0; v¼�C11 expð�C12pxÞ ð81Þ
y¼1; when C12 is an even number; v¼�C11 expð�C12pxÞ ð82Þ
y¼1; when C12 is an odd number; v¼�C11 expð�C12pxÞ ð83Þ

The thermal boundary conditions on the walls are

y ¼ 0; q0 ¼ �k
oT
oy
¼ 0 ð84Þ

y ¼ 1; q1 ¼ �k
oT
oy
¼ 0 ð85Þ

The x direction boundary conditions are as follows

x ¼ 0 u ¼ C11 sinðC12pyÞ
v ¼ �C11 cosðC12pyÞ

p ¼ � C2
11q
2 þ C16

T ¼ C14 cosðC12pyÞ þ C15

x ¼ 1 u ¼ C11 sinðC12pyÞ expð�C12pÞ
v ¼ �C11 cosðC12pyÞ expð�C12pÞ

p ¼ � C2
11q
2 expð�2C12pÞ þ C16

T ¼ C14 cosðC12pyÞ expð�C12pÞ þ C15

The streamline equation can be derived by dy=dx ¼ v=u and the
result is

ln j cosðC12pyÞj ¼ �C12pxþ C17 ð86Þ

It is noticeable that in the solution Eqs. (75)–(78)

j~Uj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
¼ jC11j expð�C12pxÞ ð87Þ

which has nothing to do with y coordinate. Another feature needs to
be pointed out is that the velocity and the temperature distribu-
tions is not related with fluid properties. Only the pressure is
related with density. Generally, it is easy to understand from Eq.
(88) that the temperature distribution has always nothing to do
with thermal property a for a non-synergy solution. It is a favorable
feature for a benchmark solution.

u
oT
ox
þ v

oT
oy
¼ 0 ¼ a

o2T
ox2 þ

o2T
oy2

 !
; ð88Þ

It is also interesting that

oT
ox
¼ �C12C14p cosðC12pyÞ expð�C12pxÞ; ð89Þ

oT
oy
¼ �C12C14p sinðC12pyÞ expð�C12pxÞ ð90Þ

oT
ox

oT
oy
¼ �ctgðC12pyÞ

�
ð91Þ

u=v ¼ �tgðC12pyÞ ð92Þ

Eqs. (91) and (92) means the internal angles of ~U and ~rT with x axis
is independent of x coordinate.

The physical situation when C12 is an odd number is different
with that when C12 is an even number. A typical example when
C12 is an odd number is as follows, in which C11 ¼ 1, C12 ¼ 1,
C14 ¼ 1, C15 ¼ 1 and C16 ¼ 1.

u ¼ sinðpyÞ expðpxÞ ð93Þ
v ¼ cosðpyÞ expðpxÞ ð94Þ
T ¼ cosðpyÞ expðpxÞ þ 1 ð95Þ

p ¼ �q
2

expð2pxÞ þ 1 ð96Þ

The streamline equations are

ln cosðpyÞ ¼ �pxþ C17: y 2 ½0;0:5� ð97Þ
ln½� cosðpyÞ� ¼ �pxþ C17: y 2 ð0:5;1� ð98Þ



Fig. 8. The stream lines and isothermal lines of the solution Eqs. (93)–(96).

Fig. 9. The stream lines and isothermal lines of the solution Eqs. (99)–(102).
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The stream lines and isothermal lines are illustrated in Fig. 8.
A typical example of this solution when C12 is an even number

is as follows, in which C11 ¼ 1, C12 ¼ 2, C14 ¼ 1, C15 ¼ 1 and
C16 ¼ 1.

u ¼ sinð2pyÞ expð2pxÞ ð99Þ
v ¼ cosð2pyÞ expð2pxÞ ð100Þ
T ¼ cosð2pyÞ expð2pxÞ þ 1 ð101Þ

p ¼ �q
2

expð4pxÞ þ 1 ð102Þ

The streamline equations are

ln cosð2pyÞ ¼ �2pxþ C17: y 2 0;0:25½ � or y 2 ½0:75;1� ð103Þ
ln½� cosð2pyÞ� ¼ �2pxþ C17: y 2 ð0:25;0:75Þ ð104Þ

The stream lines and isothermal lines are illustrated in Fig. 9. These
examples further demonstrate the common belief that the fluid
flow enhances the heat transfer is not always true [1]. And one of
the methods of enhancing single phrase convective heat transfer,
namely increasing the interruption in the fluid are not always effec-
tive. They also prove that the fluid motion can be utilized to weaken
the heat transfer.

6. Conclusions

Some exact solutions for 2-D convective heat transfer between
two parallel penetrable walls were presented in this paper. These
results are both theoretically important and valuable to the com-
putational heat transfer as benchmark solutions. And they are
valuable to further develop the field synergy principle and under-
stand how to improve or to weaken field synergy in practice. The
influence of some factors and the variation of Int, Nu1, Nu0, DNu,
h and Fc were also discussed. It was demonstrated that the field
synergy degree might have different influences on the heat transfer
condition of different walls for this kind of flow. It was also pointed
out that the local field synergy degree might be more meaningful
than the field synergy degree in the whole domain in some cases.
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